SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning

نویسنده

  • Vincent Guigues
چکیده

We consider interstage dependent stochastic linear programs where both the random right-hand side and the model of the underlying stochastic process have a special structure. Namely, for equality constraints (resp. inequality constraints) the right-hand side is an affine function (resp. a given function bt) of the process value for the current time step t. As for m-th component of the process at time step t, it depends on previous values of the process through a function htm. For this type of problem, to obtain an approximate policy under some assumptions for functions bt and htm, we detail a stochastic dual dynamic programming algorithm. Our analysis includes some enhancements of this algorithm such as the definition of a state vector of minimal size, the computation of feasibility cuts without the assumption of relatively complete recourse, as well as efficient formulas for sharing optimality and feasibility cuts between nodes of the same stage. The algorithm is given for both a non-risk-averse and a risk-averse model. We finally provide preliminary results comparing the performances of the recourse functions corresponding to these two models for a real-life application. AMS subject classifications: 90C15, 91B30.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Two-level Sddp Solving Strategy with Risk-averse Multivariate Reservoir Storage Levels for Long Term Power Generation Planning

Power generation planning in large-scale hydrothermal systems is a complex optimization task, specially due to the high uncertainty in the inflows to hydro plants. Since it is impossible to traverse the huge scenario tree of the multi-stage problem, stochastic dual dynamic programming (SDDP) is the leading optimization technique to solve it, originally from an expected-cost minimization perspec...

متن کامل

The value of rolling-horizon policies for risk-averse hydro-thermal planning

We consider the optimal management of a hydro-thermal power system in the mid and long terms. From the optimization point of view, this amounts to a large-scale multistage stochastic linear program, often solved by combining sampling with decomposition algorithms, like stochastic dual dynamic programming. Such methodologies, however, may entail prohibitive computational time, especially when ap...

متن کامل

Risk-averse feasible policies for large-scale multistage stochastic linear programs

We consider risk-averse formulations of stochastic linear programs having a structure that is common in real-life applications. Specifically, the optimization problem corresponds to controlling over a certain horizon a system whose dynamics is given by a transition equation depending affinely on an interstage dependent stochastic process. We put in place a rollinghorizon time consistent policy....

متن کامل

Risk neutral and risk averse Stochastic Dual Dynamic Programming method

In this paper we discuss risk neutral and risk averse approaches to multistage (linear) stochastic programming problems based on the Stochastic Dual Dynamic Programming (SDDP) method. We give a general description of the algorithm and present computational studies related to planning of the Brazilian interconnected power system. 2012 Elsevier B.V. All rights reserved.

متن کامل

SDDP for multistage stochastic linear programs based on spectral risk measures

We consider risk-averse formulations of multistage stochastic linear programs. For these formulations, based on convex combinations of spectral risk measures, risk-averse dynamic programming equations can be written. As a result, the Stochastic Dual Dynamic Programming (SDDP) algorithm can be used to obtain approximations of the corresponding risk-averse recourse functions. This allows us to de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2014